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ABSTRACT

EEG (Electroencephalograph), as a noninvasive testing
method, plays a key role in the diagnosing diseases, and is
useful for both physiological research and medical
applications. Wavelet transform (WT) is a new multi-
resolution time-frequency analysis method. WT possesses
localization feature both in time and frequency domains. It acts
as a group of band-pass filters decompose mixed signal into
signals at frequency bands. Using the dyadic wavelet
transform, the EEG signals are successfully decomposed and
denoised.

In this paper we also use a ‘quasi-detrending’ method for
classification of EEG spectrum where the level of detrending
or differencing is made to vary. Difference in time domain acts
as a high pass filter in the frequency domain. Therefore the low
frequency values in the delta range can be ignored and this is a
saving in computation time since delta range values do not
correspond to any normal conscious human mental tasks. We
also show that using discrete PSD (power spectral densities)
values in the range below 30 Hz gives better classification
results than using the delta, theta, alpha and beta power band
values used by some authors.

Keywords: EEG, Time-Frequency Analysis (TFA), Wavelet
Transform (WT) Spectral Analysis, Quasi-detrending

INTRODUCTION:

Recent years, the time-frequency analysis (TFA) has been
successfully applied in some biomedical signals to detect
both temporal and spectral features of biomedical signals.
Wavelet transform (WT) is one of the TFA, and has been
used successfully in many applications. In this paper,
wavelet transform is applied to analyze and decompose the
time-varying and non-stationary EEG signal, investigate its
time-frequency characteristics, and remove the noise.
Further stationary transformation through the removal of
low frequency trends is often a preliminary step to
estimating a spectrum and failure to do so can lead to
misleading power spectrum. Linear trends can be removed
by first and second differencing while logarithmic
differences are used for cyclical trends performed at any
instant of time. After decomposing and denoising, we use a
‘quasi-detrending” method proposed by Nerlove [11].
Nerlove has suggested of transforming the original time
series into quasi-detrended time series by

(1) Z(n) = X(n) - K(x)(n-1),

where x(n) is the original time series, z(n) is the transformed
series, n is the sampling point and k is the quasi-detrending
factor. Higher level detrending would remove too much
power from the signal in the low frequency range and might
serve to worsen the spectral estimation. As such, an optimal
value of k would give the least distortion while also
removing linear trends in the power spectrum. we have
investigated the performance of the spectrum with different
values of k.

Fig. 1 shows an example where 0.5 quasi-detrending
removes low frequency cycles but maintains the spectral
peak as before detrending thereby improving the quality of

the spectrum.

Figure 1: PSD (a) without detrending {b) with 0.5 quasi-detrending

METHOD

WT possesses well localization feature [3] both in time and
frequency domains. It acts as a group of band-pass filters to
decompose mixed signal into signals at different frequency
bands. Mallat [1] [2] [4] fast algorithm of wavelet
transform is used to decompose and reconstruct EEG
signals. Adopting this algorithm, signals are decomposed to
wavelet coefficients in different scales. Some coefficients
related to noises are discarded, and the remained signals are
reconstructed by inverse WT, then noises can be removed.

Mallat proved that the average density of modulus maxima
of a white noise is inversely proportional to the scale s of
WT. With the increase of scale, WT of EEG and noises
present different inclination. Energy of noises concentrate
on 21 scale and decrease significantly when the scale
increases, while EEG concentrates mainly on scales 22 -25.
By eliminating wavelet coefficients of small scales,
denoised EEG is reconstructed by other scales, and the
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useful signals of EEG are well reserved while noises are
removed effectively.

We now apply the of Quasi-detrending method to improve
the spectral analysis of the EEG data obtained, the level of
detrending is made to vary. Detrending in time domain acts
as a high pass filter in the frequency domain. Therefore the
low frequency values in the delta range (0-3 Hz) can be
ignored and this is a saving in computation time since delta
range values do not correspond to any normal conscious
human mental tasks. The EEG power spectral densities
(PSD) are extracted using Wiener — Khintchine theorem
with Tukey window smoothing with 25% truncation point
for frequencies up to 30 Hz. The EEG signals extracted are
from 6 channels: C3, P3 and O1 from the left hemisphere
and C4, P4 and O2 from the right hemisphere, in the
standard 10-20 positioning scheme. The subjects are seated
in a sound controlled booth with dim lighting and noiseless
environment. The electrodes are connected through a bank
of amplifiers and band-pass filtered from 0.1--100 Hz. The
data was sampled at 250 Hz with a 12-bit A/D converter
mounted on a computer. Four subjects are studied with two
different mental tasks namely a complex multiplication task
and a visual task imagining an image being rotated about an
axis. These two tasks were chosen since they elicit different
hemispheric response [10]. Data was recorded for 10
seconds during each task. With a 250 Hz sampling rate,
each 10 second trial produces 2,500 samples per channel.
Each EEG signal is segmented with a half-second window
and a quarter-second overlap.

A Fuzzy ARTMAP (FA) [8] classifier is used to classify
these 6 channels of EEG. Vigilance parameter for Fuzzy
ART a module was fixed at 0.9. For all the experiments,
50% of available patterns are used for training while the rest
50% are used for testing as shown in figure 2
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Figure 2: Fuzzy ARTMAP network structure as nsed in this paper

RESULTS

Using the dyadic wavelet transform, we successfully
decompose the EEG signals to the alpha rhythm (8-13Hz),
beta rhythm (14-30Hz) and theta rhythm (4-7Hz) as shown
in Fig.3, and effectively remove the noise trembles in EEG

while the useful information of EEG are well reserved so as
to improve SNR (Signal Noise Ratio) as shown in Fig. 4.
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Figure 3: Noisy EEG signal and its wavelet transform at
different scales.
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Figure 4: EEG and its denoising (a) EEG signal
with noise (b) denoised EEG

The results of the ‘quasi-detrending’ of the obtained EEG
signal at a time instant improves the FA classification
performance from 83.97% to 91.67% across all four
subjects as compared to FA classification without
detrending and with all other parameters fixed. The
complete results are shown in Table 1. We can also see from
this table that any quasi-detrending improves the

Table 1: Fuzzy ARTMAP classificaiion for quasi-detrended signals
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performance with k=1 giving the best results for subject 1,2
and 4, while k=0.75 gives the best results for subject 3.
Table 2 shows the results of another experiment. This table
shows improvement of using discrete PSD values in the
range below 30 Hz rather than using the delta, theta, alpha
and beta power band values used by some authors [9-10]
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CONCLUSION

The main advantage of wavelet transform is to provide
simultaneous information on frequency and time location of
the signal. By wavelet transform, EEG can be decomposed
into different detail components or various frequency bands,
and the noise also can be rejected effectively according to
the different behavior of WT coefficients of signal and
noise. Doctors may use those detail components and
denoised EEG for further clinical analysis [7]. It is indicated
that WT provides a promising method to characterize the
EEG and remove the noise.

The quasi-detrending gives improved performance than
without detrending and that discrete PSD values below 30
Hz perform better than using band power values. The results
also show that it is possible to discriminate accurately
between different mental tasks using the improved EEG
spectrum and this can be used as a form of communication
for paralysed patients [10].
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